Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress
نویسندگان
چکیده
Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders.
منابع مشابه
Knockdown of SLC39A7 suppresses cell proliferation, migration and invasion in cervical cancer
Cervical cancer is the fourth leading cause of malignancy related mortality in women worldwide. SLC39A7 (ZIP7) is a zinc transporter that plays a key role in intestinal epithelial self-renewal. However, whether or not SLC39A7 is involved in human cervical cancer remains unclear. In this study, we investigated the effects of SLC39A7 in cervical cancer in vitro and elucidate related underlying me...
متن کاملThe ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus.
It has been suggested that ZIP7 (Ke4, Slc39a7) belongs to the ZIP family of zinc transporters. Transient expression of the V5-tagged human ZIP7 fusion protein in CHO cells led to elevation of the cytoplasmic zinc level. However, the precise function of ZIP7 in cellular zinc homeostasis is not clear. Here we report that the ZIP7 gene is ubiquitously expressed in human and mouse tissues. The endo...
متن کاملZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus
متن کامل
The Zinc Transporter, Slc39a7 (Zip7) Is Implicated in Glycaemic Control in Skeletal Muscle Cells
Dysfunctional zinc signaling is implicated in disease processes including cardiovascular disease, Alzheimer's disease and diabetes. Of the twenty-four mammalian zinc transporters, ZIP7 has been identified as an important mediator of the 'zinc wave' and in cellular signaling. Utilizing siRNA targeting Zip7 mRNA we have identified that Zip7 regulates glucose metabolism in skeletal muscle cells. A...
متن کاملProtein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7.
The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to e...
متن کامل